#DataframeMethod

pivot() in PySpark:

The pivot() function reshapes the DataFrame by turning unique values from one column into separate columns. It is used along with groupBy() to perform aggregations on grouped data.

Syntax: -

DataFrame.pivot(pivot_col, values=None)

Parameters:

Example: -

from pyspark.sql.functions import sum

# Sample DataFrame
df = spark.createDataFrame([
    ('A', 'cat', 1),
    ('A', 'dog', 2),
    ('B', 'cat', 3),
    ('B', 'dog', 4)
], ['ID', 'Animal', 'Count'])

# Pivot the data
pivoted_df = df.groupBy("ID").pivot("Animal").agg(sum("Count"))

pivoted_df.show()
+---+---+---+
| ID|cat|dog|
+---+---+---+
|  A|  1|  2|
|  B|  3|  4|
+---+---+---+

Explanation: